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Overview

Stochastic choice: Population-level data, choice frequencies; Individual-level data.
Why is individual choice (seemingly) random?
— Mistakes: trembling hands, mistakes.
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February 2022, Spain

Spain’s Socialist-led government was trying to get a significant labour reform approved
in parliament.
While the labour reform was agreed with business and union organisations in

December following months of negotiations, the government was unable to build a
stable parliamentary majority for Thursday’s vote.

The government had previously secured the support of the two MPs from UPN and
expected them to vote "yes" in the vote; they declared throughout the afternoon of
the previous day and the day of the vote that they would vote in favor of the reform.
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in parliament.

While the labour reform was agreed with business and union organisations in
December following months of negotiations, the government was unable to build a
stable parliamentary majority for Thursday’s vote.

The government had previously secured the support of the two MPs from UPN and
expected them to vote "yes" in the vote; they declared throughout the afternoon of
the previous day and the day of the vote that they would vote in favor of the reform.

However, backstage negotiations with the leader of the opposition would see these two
MPs vote "'no" leading to a rejection of the reform with 174 votes in favor and 175
against!
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February 2022, Spain

Spain’s Socialist-led government was trying to get a significant labour reform approved
in parliament.

While the labour reform was agreed with business and union organisations in
December following months of negotiations, the government was unable to build a
stable parliamentary majority for Thursday’s vote.

The government had previously secured the support of the two MPs from UPN and
expected them to vote "yes" in the vote; they declared throughout the afternoon of
the previous day and the day of the vote that they would vote in favor of the reform.

However, backstage negotiations with the leader of the opposition would see these two
MPs vote "'no" leading to a rejection of the reform with 174 votes in favor and 175
against!

However... an MP from the opposition, Alberto Casero Avila, makes a mistake when
casting his vote and voted "yes". The final count allowed the necessary majority to be
reached and the reform passed.
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Overview

Stochastic choice: Population-level data, choice frequencies; Individual-level data.
Why is individual choice (seemingly) random?
— Mistakes: trembling hands, mistakes.

- Information: Changes in the environment; agent doesn't see choice as random.
Information arrival may affect how individual's compare alternatives: at the
restaurant you are told that sea breams are particularly good that day.

Gongalves (UCL) 9. Stochastic Choice



Overview

Stochastic choice: Population-level data, choice frequencies; Individual-level data.
Why is individual choice (seemingly) random?
— Mistakes: trembling hands, mistakes.

- Information: Changes in the environment; agent doesn't see choice as random.
Information arrival may affect how individual's compare alternatives: at the
restaurant you are told that sea breams are particularly good that day.

- Randomly fluctuating tastes: these can be due to alternating diversity (I like both
meat and fish, but | alternate between the two instead of buying half a portion of
each every time) or some other factor that is unobserved by the analyst.
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Overview

Stochastic choice: Population-level data, choice frequencies; Individual-level data.

Why is individual choice (seemingly) random?

— Mistakes: trembling hands, mistakes.

- Information: Changes in the environment; agent doesn't see choice as random.
Information arrival may affect how individual's compare alternatives: at the
restaurant you are told that sea breams are particularly good that day.

- Randomly fluctuating tastes: these can be due to alternating diversity (I like both
meat and fish, but | alternate between the two instead of buying half a portion of
each every time) or some other factor that is unobserved by the analyst.

- Random attention, misperception: items considered change (e.g., you fail to find
your preferred jam in a supermarket so you go for another one; the analyst sees
the jam in stock and changes in behaviour are seen as stochastic).
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Overview

Stochastic choice: Population-level data, choice frequencies; Individual-level data.

Why is individual choice (seemingly) random?
— Mistakes: trembling hands, mistakes.

Information: Changes in the environment; agent doesn't see choice as random.
Information arrival may affect how individual's compare alternatives: at the
restaurant you are told that sea breams are particularly good that day.

Randomly fluctuating tastes: these can be due to alternating diversity (I like both
meat and fish, but | alternate between the two instead of buying half a portion of
each every time) or some other factor that is unobserved by the analyst.

- Random attention, misperception: items considered change (e.g., you fail to find

your preferred jam in a supermarket so you go for another one; the analyst sees

the jam in stock and changes in behaviour are seen as stochastic).

Experimentation: you moved countries and you are trying to find out which kind of
bread you like the most at your new local bakery.
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Overview

Stochastic choice: Population-level data, choice frequencies; Individual-level data.

Why is individual choice (seemingly) random?
— Mistakes: trembling hands, mistakes.

Information: Changes in the environment; agent doesn't see choice as random.
Information arrival may affect how individual's compare alternatives: at the
restaurant you are told that sea breams are particularly good that day.

Randomly fluctuating tastes: these can be due to alternating diversity (I like both
meat and fish, but | alternate between the two instead of buying half a portion of
each every time) or some other factor that is unobserved by the analyst.

- Random attention, misperception: items considered change (e.g., you fail to find

your preferred jam in a supermarket so you go for another one; the analyst sees

the jam in stock and changes in behaviour are seen as stochastic).

Experimentation: you moved countries and you are trying to find out which kind of
bread you like the most at your new local bakery.

Information, random attention, information acquisition, experimentation: topics
developed in Term 2 topics course

Today: A bird's-eye view of stochastic choice.
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Overview

2. Stochastic Choice and Random Utility
— Random Utility Model



Stochastic Choice

Primitives
Alternatives: X (assume finite for convenience).
Menus: A = {A C X|A 7 0}.
Shift focus to stochastic choice: from choice functions to choice frequencies.
Recall choice function: C(A) CA A F#0 = C(A) #70.
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Stochastic Choice

Primitives
Alternatives: X (assume finite for convenience).
Menus: A = {A C X|A 7 0}.
Shift focus to stochastic choice: from choice functions to choice frequencies.
Recall choice function: C(A) CA A F#0 = C(A) #70.

Definition
p : A — A(X) is a stochastic choice function (SCF) iff supp(p(4)) C A.
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Stochastic Choice

Primitives
Alternatives: X (assume finite for convenience).
Menus: A = {A C X|A 7 0}.
Shift focus to stochastic choice: from choice functions to choice frequencies.
Recall choice function: C(A) CA A F#0 = C(A) #70.

Definition
p : A — A(X) is a stochastic choice function (SCF) iff supp(p(4)) C A.

p(x,A) = p(xIA): prob. choosing x from A.
p (instead of C) describes observable data.

WT obtain useful characterisation of p
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Random Utility

Definition

A random utility model (RUM) is a pair (i, 7) s.t. ¢4 = {u: X — R} C RX,and 1t € AW/).

Stochastic choice because population heterogeneous or varying preferences.
Menu A drawn at random

Preference drawn at random
Preference as individual (or mood, shock, etc.)

Independent of menu; hard with heterogenous population assumption: need that
different people choose from the same menu with the same prob.
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Random Utility

Definition

A stochastic choice function p admits a random utility (RU) representation iff there is
a random utility model (4, m) s.t. p(x, A) = n{u € U | x € argmaxea u(y)}).
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Random Utility

Definition

A stochastic choice function p admits a random utility (RU) representation iff there is
a random utility model (4, m) s.t. p(x, A) = n{u € U | x € argmaxea u(y)}).

Key assumption:  invariant wrt feasible set A, ow RUM has no empirical content (Why?)

WLOG, can replace U with the set of all preference relations on X,
R = {=e X?| = s.t. completeness and transitivity}.
(Possibly better, as when X is finite R is finite but RX is not.)

NB: WLOG to focuson = st. ix 7y - x ~ y
R:={~cRIvxy eX:x7y,—~(x~y)}
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Random Utility

Definition

A stochastic choice function p admits a random utility (RU) representation iff there is
a random utility model (4, m) s.t. p(x, A) = n{u € U | x € argmaxea u(y)}).

Key assumption:  invariant wrt feasible set A, ow RUM has no empirical content (Why?)

WLOG, can replace U with the set of all preference relations on X,
R = {=e X?| = s.t. completeness and transitivity}.
(Possibly better, as when X is finite R is finite but RX is not.)
NB: WLOG to focuson = st. ix 7y - x ~ y
R:={~cRIvxy eX:x7y,—~(x~y)}

Proposition

p has a RU representation if and only if there ist € A(R) : p(x,A) = n({=e RIx =
arg maxs A}).
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Random Utility

Definition

A stochastic choice function p admits a random utility (RU) representation iff there is
a random utility model (4, m) s.t. p(x, A) = n{u € U | x € argmaxea u(y)}).

Key assumption:  invariant wrt feasible set A, ow RUM has no empirical content (Why?)

WLOG, can replace U with the set of all preference relations on X,
R = {=e X?| = s.t. completeness and transitivity}.
(Possibly better, as when X is finite R is finite but RX is not.)
NB: WLOG to focuson = st. ix 7y - x ~ y
R:={~cRIvxy eX:x7y,—~(x~y)}

Proposition

p has a RU representation if and only if there ist € A(R) : p(x,A) = n({=e RIx =
arg maxs A}).

We'll call both © € A(R) and T € A(U/) RUM
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Random Utility

Definition

A stochastic choice function p sat. monotonicity if Vx € B C A C X, p(x,B) > p(x,A).

Also called ‘regularity’ (too presumptuous and uninformative an expression).
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Random Utility

Definition

A stochastic choice function p sat. monotonicity if Vx € B C A C X, p(x,B) > p(x,A).

Also called ‘regularity’ (too presumptuous and uninformative an expression).

Proposition

p has a RU representation only if it sat. monotonicity.
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Random Utility

Definition

A stochastic choice function p sat. monotonicity if Vx € B C A C X, p(x,B) > p(x,A).

Also called ‘regularity’ (too presumptuous and uninformative an expression).

Proposition

p has a RU representation only if it sat. monotonicity.

Proof

Vx € BCAVYZeR x=argmax- A = x = argmaxs B.
= Vx € BC A, {=€ RIx € argmaxs A} C {=€ RIx € argmaxs B}.

= Vx € BCA pxA) = n({z€ RIx € argmaxs A}) < n({-5€ RIx € argmaxs B}) =
p(x, B).
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Random Utility

Definition

A stochastic choice function p sat. monotonicity if Vx € B C A C X, p(x,B) > p(x,A).

Plenty of reasons why SCF monotonicity may fail.
- With larger choice sets, it may be more difficult to find and compare items (search
is costly, and so is thinking about the differences and assessing alternatives!).
DM may end up choosing a particularly salient but worse product more often
than with a smaller choice set. Status quo.
- Decoy effect: Economist.com subscription $59, Print subscription $125, Print +
Economist.com subscription $125.
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Random Utility

Definition

A stochastic choice function p sat. monotonicity if Vx € B C A C X, p(x,B) > p(x,A).

Is monotonicity sufficient for SCF to have RU representation?

Gongalves (UCL) 9. Stochastic Choice



Random Utility

Proposition

If [X| < 3, then p sat. monotonicity if and only if it admits RU representation.

Proof

X ={a,b,c}. IR| = 6. Identify € R with preference ordering (a,b,c) = a >~ b = c.

Note: (a) n((a, b, c)) + w((a,c, b)) = p(a,X), (b) =n((b,a,c)) +n((b,c,a)) = p(b, X),
(¢) n((c,b,a)) +n((c.a,b)) = p(c, X)
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If [X| < 3, then p sat. monotonicity if and only if it admits RU representation.

Proof

X ={a,b,c}. IR| = 6. Identify € R with preference ordering (a,b,c) = a >~ b = c.

Note: (a) n((a, b, c)) + w((a,c, b)) = p(a,X), (b) =n((b,a,c)) +n((b,c,a)) = p(b, X),
(¢) n((c,b,a)) +n((c.a,b)) = p(c, X)
Then: p(a,{a, b}) = p(a,X) +n((c,a,b))
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Proposition
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Random Utility

Proposition

If [X| < 3, then p sat. monotonicity if and only if it admits RU representation.

Proof

X ={a,b,c}. IR| = 6. Identify € R with preference ordering (a,b,c) = a >~ b = c.

Note: (a) n((a, b, c)) + w((a,c, b)) = p(a,X), (b) =n((b,a,c)) +n((b,c,a)) = p(b, X),
(¢) n((c,b,a)) +n((c.a,b)) = p(c, X)

Then: p(a,{a,b}) = p(a,X) + n((c,a,b)) < =n((c,a,b)) = p(a,{a,b}) — p(a, X)
By similar logic:

e n((c.a,b)) = p(a.{a.b}) —p(a.X) en((c,b,a))=pb.{ab}) - pb X)
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Random Utility

Proposition

If [X| < 3, then p sat. monotonicity if and only if it admits RU representation.

Proof

X ={a,b,c}. IR| = 6. Identify € R with preference ordering (a,b,c) = a >~ b = c.

Note: (a) n((a,b,c)) + w((a,c,b)) = p(a,X), (b) w((b,a,c)) +n((b,c, a)) = pb,X),
(©) m((c. b, a)) +n((c.a,b)) = p(c.X)

Then: p(a,{a,b}) = p(a,X) + n((c,a,b)) <= =n((c,a,b)) = p(a,{a,b}) — p(a,X)

By similar logic:

e n((c.a,b)) = p(a.{a,b}) - paX) en((c.b,a))=pb {ab}) - pb X)

e n((b,a,c)) = pla{a,ch) - pla,X) en((b.ca)=plcfach-plcX)

e (@ b,c)) = p(b.{b.c}) —p(b.X) em((ac.b)) = pb. b, C}) p(c. X)

. >0 <= p sat. monotonicity. By definition, n(R) = O
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Random Utility

Beyond 3 alternatives, monotonicity is not sufficient.

Directly generalise difference idea from proof with 3 items.
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Random Utility

Beyond 3 alternatives, monotonicity is not sufficient.

Directly generalise difference idea from proof with 3 items.

Definition (Block & Marschak 1960)

SCF p sat. Block-Marschak inequalities iff ¥x € X,A € A, Z -1®p(x,B) > 0.

ACB
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Random Utility

Beyond 3 alternatives, monotonicity is not sufficient.

Directly generalise difference idea from proof with 3 items.

Definition (Block & Marschak 1960)

SCF p sat. Block-Marschak inequalities iff ¥x € X,A € A, Z -1®p(x,B) > 0.
ACB

{ Definition (McFadden & Richter 1990)

A SCF p sat. the Axiom of Revealed Stochastic Preference (ARSP) iff, V finite se-
quences {(A1,B1),(A2,Bs),- -+, (An, Bn)} with A; € A and B; C A, (allowing for repeti-
tions) 3°Lq p(Bi,Aj) < Maxy-cg So1Lq arg max,- A; € Bj).
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Random Utility

{ Theorem

The following are equivalent:
(i) SCF p admits a RU representation.

(i) SCF p sat. Block-Marschak inequalities.
(i) SCF p sat. ARSP
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Random Utility

{ Theorem

The following are equivalent:
(i) SCF p admits a RU representation.

(i) SCF p sat. Block-Marschak inequalities.
(i) SCF p sat. ARSP

Not quite very intuitive? A connection with deterministic choice and SARP.
Still, enables tests of RUM: Kitamura & Stoye (2018 Ecta)
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Overview

3. Connecting Stochastic and Deterministic Choice



Connecting with SARP

Recall: choice function C : A — A, x is directly revealed strictly preferred to y iff 3A € A
st.xe C(A)andy € A\ C(A).

Fixing C, let S C X? s.t. xSy <= x s directly revealed strictly preferred to y.
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Connecting with SARP

Recall: choice function C : A — A, x is directly revealed strictly preferred to y iff 3A € A
st.xe C(A)andy € A\ C(A).

Fixing C, let S C X? s.t. xSy <= x is directly revealed strictly preferred to y.

Definition

A choice function C : A — A sat. the strong axiom of revealed preference (SARP)

iff there is no sequence {xg, x1,... Xn} C X s.t. x; is directly revealed strictly preferred to
Xiximod(n+) fori=0,...n.
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Connecting with SARP

Recall: choice function C : A — A, x is directly revealed strictly preferred to y iff 3A € A
st.xe C(A)andy € A\ C(A).

Fixing C, let S C X? s.t. xSy <= x is directly revealed strictly preferred to y.

Definition

A choice function C : A — A sat. the strong axiom of revealed preference (SARP)
iff there is no sequence {xg, x1,... Xn} C X s.t. x; is directly revealed strictly preferred to
Xiximod(n+) fori=0,...n.

Proposition

Let X be finite and C be a singleton-valued choice function on X, i.e, C : A — A,
A =25\ {0},
(i) 3 a preference relation >~ on X s.t. C(A) = argmaxs AVA € A if and only if C
satisfies SARP. -

(i) Furthermore, any such—isst. Vx,y e X : x 7y, x my = =(y 7 X).
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Connecting with SARP

{ Proposition
Let X be finite and C be a singleton-valued choice function on X, ie, C : A — A,
A =25\ {p}.
(i) 3 a preference relation >~ on X s.t. C(A) = argmaxs= AVA € A if and only if C
satisfies SARP.

(i) Furthermore,any such zisst. Vx,y e X xZy,x my = =y z X).
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Connecting with SARP

{ Proposition
Let X be finite and C be a singleton-valued choice function on X, ie, C : A — A,
A =25\ {p}.
(i) 3 a preference relation >~ on X s.t. C(A) = argmaxs= AVA € A if and only if C
satisfies SARP.

(i) Furthermore,any such zisst. Vx,y e X xZy,x my = =y z X).

Proof

If xSy, then for some A € A, x € argmaxs A and y ¢ argmaxs A
= xzyand—=(y Zx) = x>V.



Connecting with SARP

{ Proposition
Let X be finite and C be a singleton-valued choice function on X, ie, C : A — A,
A =25\ {p}.
(i) 3 a preference relation >~ on X s.t. C(A) = argmaxs= AVA € A if and only if C
satisfies SARP.

(i) Furthermore,any such zisst. Vx,y e X xZy,x my = =y z X).

Proof

If xSy, then for some A € A, x € argmaxs A and y ¢ argmaxs A
= xzyand—=(y Zx) = x>V.

(i) = : Suppose that SARP is violated but 3 preference relation =€ X? that ratio-
nalised C.

Then, 3H{Xj}izo_.n : Xo > X1 = -+ = Xn > Xg, Which contradicts the fact that if - is
transitive then so is its strict part ».
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Connecting with SARP

{ Proposition
Let X be finite and C be a singleton-valued choice function on X, ie, C : A — A,
A =25\ {p}.
(i) 3 a preference relation >~ on X s.t. C(A) = argmaxs= AVA € A if and only if C
satisfies SARP.

(i) Furthermore,any such zisst. Vx,y e X xZy,x my = =y z X).

Proof

(i) <= : Suppose that SARP is satisfied. Define = st x my «— JAe A:xyeA
and x = C(A).

By assumption C is singleton-value, and v¥x,y € X, x = C({x,y}) or y = C({x,y}), which
implies completeness of .

SARP immediately implies that - will be transitive.



Connecting with SARP

{ Proposition
Let X be finite and C be a singleton-valued choice function on X, ie, C : A — A,
A =25\ {p}.
(i) 3 a preference relation >~ on X s.t. C(A) = argmaxs= AVA € A if and only if C
satisfies SARP.

(i) Furthermore,any such zisst. Vx,y e X xZy,x my = =y z X).

Proof

(i) <= : Suppose that SARP is satisfied. Define = st x my «— JAe A:xyeA
and x = C(A).

By assumption C is singleton-value, and v¥x,y € X, x = C({x,y}) or y = C({x,y}), which
implies completeness of .

SARP immediately implies that - will be transitive.
(i) Immediate from the singleton-valuedness and nonemptiness of C together with
there being a preference relation - on X s.t. C(A) = argmaxs AVA € A. O

Gongalves (UCL) 9. Stochastic Choice 15



Connecting with SARP

What goes wrong if C is not singleton-valued?
Let X = {x,y,z}, C({x,y.2}) = {x. 2}, C({x, v}) = {x}; C(y. 2}) = {y. 2}

C does not violate SARP, but it violates HARP, hence there is no preference relation = on
X that can rationalise C.
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Axiom of Revealed Stochastic Preference

Proposition

Let p be a degenerate SCF and C : p(x,A) =1 = C(A) = x. C sat. SARP <= p sat.
ARSP.

Proof

(1) Only if: C violates SARP = p violates ARSP.
Then, S HC(A) € {CAN} =n+1.
Further, we can take the violating sequence so that each choice C(4;) is distinct.
(Prove it!)

Violation of SARP = data cannot be rationalised by any preference relation and
maxs p oLy Hargmaxe A € B <n+1.
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Axiom of Revealed Stochastic Preference

Proposition

Let p be a degenerate SCF and C : p(x,A) =1 = C(A) = x. C sat. SARP <= p sat.
ARSP.

Proof

(1) Only if: C violates SARP = p violates ARSP.
(2) If: C sat. SARP — p sat. ARSP.
Let - rationalise C. Then, =€ R.

Z1{C e B} = Z1{argmaxA eB}<maxZ‘l{argmaxA € B}

i=1 S NRI1
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Overview

4. Discrete Choice
— Luce Model
- Blue Bus/Red Bus
— SCP for Random Utility



Discrete Choice

Definition

A stochastic choice function p admits a discrete choice (DC) representation iff Jv :
X — Rand, Vx € X, arandom variable &(x) with full support on the real line s.t. p(x,A) =

P(x = argmax,ca V(y) +&(y)).
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Discrete Choice

Definition

A stochastic choice function p admits a discrete choice (DC) representation iff Jv :
X — Rand, Vx € X, arandom variable &(x) with full support on the real line s.t. p(x,A) =

P(x = argmax,ca V(y) +&(y)).

Interpretation: u(x) = v(x) + &(x).
v is deterministic utility function
€(x) is a 'utility shock’ to v(x).
Sometimes called additive RUM.
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Discrete Choice

Definition

A stochastic choice function p sat. positivity iff p(x,A) > 0Vx € Aand VA € A.

Necessary for DC. Also: cannot be falsified with finite data.
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Discrete Choice

Definition

A stochastic choice function p sat. positivity iff p(x,A) > 0Vx € Aand VA € A.

Necessary for DC. Also: cannot be falsified with finite data.

Theorem

Let X be finite and p be a SCF sat. positivity. p admits a RU representation if and only if
p admits a DC representation.
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Discrete Choice

Note that without further assumption, p(x, {x, y}) > 1/2 does not imply nor is implied by

v(X) > v(y)...
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Discrete Choice

Note that without further assumption, p(x, {x, y}) > 1/2 does not imply nor is implied by
v(X) > v(y)...

Definition

A stochastic choice function p admits an iid discrete choice representation iff Jv :
X — Rand, ¥x € X, arandom variable &(x) with full support on the real line s.t. p(x,A) =
P(x = argmaxyca v(y) +&(y)) and e(x) are iid Vx € X.
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X — Rand, ¥x € X, arandom variable &(x) with full support on the real line s.t. p(x,A) =
P(x = argmaxyca v(y) +&(y)) and e(x) are iid Vx € X.

Cannot identify v without further assumptions (manipulating v, observing time — more
later).

Gongalves (UCL) 9. Stochastic Choice 21



Discrete Choice

Note that without further assumption, p(x,{x, y}) > 1/2 does not imply nor is implied by

v(X) > v(y)...

Definition

A stochastic choice function p admits an iid discrete choice representation iff Jv :
X — Rand, ¥x € X, arandom variable &(x) with full support on the real line s.t. p(x,A) =
P(x = argmaxyca v(y) +&(y)) and e(x) are iid Vx € X.

Cannot identify v without further assumptions (manipulating v, observing time — more
later).

Assume g(x) iid: iid discrete choice representation.
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Discrete Choice

Observation

(v,€) is an iid DC representation of SCF p if and only if, Vo > 0,B,y € R, (awv + B, oe + )
is an iid DC representation of SCF p.
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Discrete Choice

Observation

(v,€) is an iid DC representation of SCF p if and only if, Vo > 0,B,y € R, (awv + B, oe + )
is an iid DC representation of SCF p.

Special familiar cases:
logit: () follows a zero mean extreme value distribution
probit: g(x) follows a zero mean Normal distribution
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Discrete Choice

Observation

(v,€) is an iid DC representation of SCF p if and only if, Vo > 0,B,y € R, (awv + B, oe + )
is an iid DC representation of SCF p.

Special familiar cases:
logit: () follows a zero mean extreme value distribution
probit: g(x) follows a zero mean Normal distribution

iid DC: let exy = e(x) — e(y) ~ F(-).

Then: p(x, {x,y)) = P(e(y) - () < v(x) = v(¥)) = Fv(x) = v(y)).
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Binary Discrete Choice

Definition

A stochastic choice function p admits a Fechnerian representation iff 3v : X — R and
strictly increasing F : R — [0, 1] s.t. p(x, {x,¥}) = F(v(x) = v(y)) ¥x,y € X.
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Binary Discrete Choice

Definition

A stochastic choice function p admits a Fechnerian representation iff 3v : X — R and
strictly increasing F : R — [0, 1] s.t. p(x, {x,¥}) = F(v(x) = v(y)) ¥x,y € X.

RUM and Fechnerian models non-nested.

Fechnerian models sat. Weak Stochastic Transitivity:
=C X2 xry < plx{xy)) > 1/2is transitive.
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Binary Discrete Choice

Definition

A stochastic choice function p admits a Fechnerian representation iff 3v : X — R and
strictly increasing F : R — [0, 1] s.t. p(x, {x,¥}) = F(v(x) = v(y)) ¥x,y € X.

RUM and Fechnerian models non-nested.

Fechnerian models sat. Weak Stochastic Transitivity:
=C X2 xry < plx{xy)) > 1/2is transitive.

Fechnerian models are special case of simple scalability models:

Definition

A stochastic choice function p admits a simple scalability representation iff 3v : X —
R and strictly increasing F : R? — [0,1] s.t. p(x, {x, y}) = F(v(x), v(y)) ¥x,y € X.
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Binary Discrete Choice

Definition

Let p be a SCFon X and let x,y,z be s.t. p(x, {x, y}), p(y, {y. 2}) > 1/2.p sat.

(i) Weak Stochastic Transitivity iff p(x, {x,z}) > 1/2;

(i) Strong Stochastic Transitivity iff p(x, {x, z}) > max{p(x, {x, y}), p(v. {v. 2})};

(i) Tversky-Russo Independence iff Vx,y,w,z € X, p(x,{x,w}) > p(y.{y,w})
p(x.{x.2}) > p(v.{v. 2});

(iv) Tversky-Russo Substitutability iff Vx,y,z € X, p(x,{x,z}) > p(y.{v.2})
p(x,{x,y}) > 1/2.

—

—
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Binary Discrete Choice

Definition

Let p be a SCFon X and let x,y,z be s.t. p(x, {x, y}), p(y, {y. 2}) > 1/2.p sat.

(i) Weak Stochastic Transitivity iff p(x, {x,z}) > 1/2;

(i) Strong Stochastic Transitivity iff p(x, {x, z}) > max{p(x, {x, y}), p(v. {v. 2})};

(i) Tversky-Russo Independence iff Vx,y,w,z € X, p(x,{x,w}) > p(y.{y,w})
p(x.{x.2}) > p(v.{v. 2});

(iv) Tversky-Russo Substitutability iff Vx,y,z € X, p(x,{x,z}) > p(y.{v.2})
p(x,{x,y}) > 1/2.

—

—

{ Theorem (Tversky & Russo (1969 JMathPsy))

The following are equivalent:
(i) p sat. strong stochastic transitivity;

(i) p sat. TR independence;
(iii) p sat. TR substitutability;
)

(iv) p admits a simple scalability representation.
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Luce Model

Definition

A stochastic choice function p admits a Luce representation iff 3v : X — R4+ st

-V
p(X’A). ZyeA V(y)

Interpretation: v(x) as intensity of preference for x; choice prob. o preference intensity.

Arguably bread-and-butter of much empirical and structural work.
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Luce Model

Definition

A stochastic choice function p admits a Luce representation iff 3v : X — R4+ st
_ VX
p(x,A) =

ZyeA V(y)

Interpretation: v(x) as intensity of preference for x; choice prob. o preference intensity.

Arguably bread-and-butter of much empirical and structural work.

Theorem (McFadden (1973))

The following are equivalent:
(i) p admits a logit representation with v;
(iid DC with g(x) ~zero mean extreme value distribution)

(i) p admits a Luce representation with ¥ = exp ov.
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Luce Model

Some properties of Luce/logit representation:

Definition

A stochastic choice function p sat.

Luce’s independence of irrelevant alternatives iff Vx, y € ANB, whenever probabilities
p(x,A) _ p(x,B).

pi.A) (. B)
Luce’s choice property iff Vx € B C A, p(x,A) = p(x, B)p(B, A),

where p(B,A) = 3, <5 P, A).

are positive,
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Luce Model

Some properties of Luce/logit representation:

Definition
A stochastic choice function p sat.

Luce’s independence of irrelevant alternatives iff Vx, y € ANB, whenever probabilities
are positive p(x.A) = p(x.B).
"p(.A)  p(.B)’

Luce’s choice property iff Vx € B C A, p(x,A) = p(x, B)p(B, A),

where p(B,A) = 3, <5 P, A).

Turns out these pin-down a Luce representation!
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Luce Model

{ Theorem (Luce (1969))

Let X be finite and p a SCF on X. The following are equivalent:
(i) p satisfies positivity and Luce's IIA;

(i) p satisfies positivity and Luce’s choice property;

(iii) p admits a Luce representation.

Characterisation (i) allows you to test if your data is consistent with logit choice (rather
than just assuming it);
(ii) provides useful properties that you can use in derivations.
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Luce Model

Theorem (Luce (1969))

(i) positivity and Luce's IIA <= (iii) Luce representation.

Proof

e (i) positivity and Luce's lIA <= (iii) Luce representation.
Focuson = .
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pPL.A) _ P X)

px,A)  p(x.X)




Luce Model

Theorem (Luce (1969))

(i) positivity and Luce's IIA <= (iii) Luce representation.

Proof

e (i) positivity and Luce's lIA <= (iii) Luce representation.
Focuson = .
Define v(x) = p(x, X) and fix x € A.
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Luce Model

Theorem (Luce (1969))

(i) positivity and Luce's IIA <= (iii) Luce representation.

Proof

e (i) positivity and Luce's lIA <= (iii) Luce representation.
Focuson = .

Define v(x) = p(x, X) and fix x € A.

py.A) _ p(nX) i, pix.A) _ v(y)
P A plx ) PUA TPUR G T P
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Luce Model

Theorem (Luce (1969))

(i) positivity and Luce's IIA <= (iii) Luce representation.

Proof

e (i) positivity and Luce's lIA <= (iii) Luce representation.
Focuson = .

Define v(x) = p(x, X) and fix x € A.
PUA) _ 0UX) s o) = ply. ) 2EA - W)y

p(A)  p(x,X) ' p.X)  v(X)
=1=) py.A = Zv—mp(x,A)
YEA YEA (X)
__ VX
= p(XIA) ZyeA V(Y)
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Luce Model

Theorem (Luce (1969))

(i) positivity and Luce's IIA <= (iii) Luce representation.

Proof

e (i) positivity and Luce’s choice property <= (iii) Luce representation.
Again focus on = .

Define v in same manner.

p(x,X) = p(x, A)p(A,X) = p(x, A) > p(y,X)
yEA



Luce Model

Theorem (Luce (1969))

(i) positivity and Luce's IIA <= (iii) Luce representation.

Proof

e (i) positivity and Luce’s choice property <= (iii) Luce representation.
Again focus on = .

Define v in same manner.
v(x)

P0G X) = p(AIP(AX) = p(,A) D P, X) <= p(XA) = =——rs.

ZyeA V(y)

yeA
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Blue Bus/Red Bus (Debreu’s Critique)

Suppose DM chooses between taking red buses (rb), blue buses (bb), and trains (t).

Suppose we observe that p(t,{rb, t}) = p(t,{bb, t}) = p(rb,{rb,bb}) = 1/2.
p(t,{rb,t}) = p(rb,{rb, t}) = 1/2.
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Blue Bus/Red Bus (Debreu’s Critique)

Suppose DM chooses between taking red buses (rb), blue buses (bb), and trains (t).

Suppose we observe that p(t,{rb, t}) = p(t,{bb, t}) = p(rb,{rb,bb}) = 1/2.
p(t,{rb,t}) = p(rb,{rb, t}) = 1/2.

If p admits an iid discrete choice representation, it must be that p(t, {t,rb, bb}) = 1/3.
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Blue Bus/Red Bus (Debreu’s Critique)

Suppose DM chooses between taking red buses (rb), blue buses (bb), and trains (t).

Suppose we observe that p(t,{rb, t}) = p(t,{bb, t}) = p(rb,{rb,bb}) = 1/2.
p(t,{rb,t}) = p(rb,{rb, t}) = 1/2.

If p admits an iid discrete choice representation, it must be that p(t, {t,rb, bb}) = 1/3.

Issue: if we had n colors of buses, we would then have that p(t, X) = 1/(n + 1), which
makes no sense if DM does not care for the color of the bus.
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Blue Bus/Red Bus (Debreu’s Critique)

Suppose DM chooses between taking red buses (rb), blue buses (bb), and trains (t).

Suppose we observe that p(t,{rb, t}) = p(t,{bb, t}) = p(rb,{rb, bb}) = 1/2.
p(t.{rb,t}) = p(rb,{rb, t}) = 1/2.

If p admits an iid discrete choice representation, it must be that p(t, {t,rb, bb}) = 1/3.

Issue: if we had n colors of buses, we would then have that p(t, X) = 1/(n + 1), which
makes no sense if DM does not care for the color of the bus. How to handle this?
Use RUM: place equal probonrb > bb = t,bb = rb =t , t = rb = bb,and t > bb = rb

or use parametric discrete choice families (e.g., nested logit: color as an attribute
of buses).
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Controlled Randomisation

{ Definition
Let V(p) == > yex PX)V(X) — C(p), where C : A(X) — R, v : X — R. SCF p on X admits a
perturbed utility representation if p = arg max ¢ (x) V().

Moreover, p admits an additive perturbed utility representation if, for any A C X and
somea > 0,B €R,Clp) =), nclp(x) + B, withc:[0,7] = RU{co}.
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Controlled Randomisation

{ Definition
Let V(p) == > yex PX)V(X) — C(p), where C : A(X) — R, v : X — R. SCF p on X admits a
perturbed utility representation if p = arg max ¢ (x) V().

Moreover, p admits an additive perturbed utility representation if, for any A C X and
somea > 0,B €R,Clp) =), nclp(x) + B, withc:[0,7] = RU{co}.

Interpretation:
- Trembling hands with implementation costs
- Cost to pay attention, be precise
- Hedging against ambiguity
- Regret minimisation
Examples of cost functions:
- Log: c(x) = —Inx
- Quadratic: ¢c(x) = x?
- Entropy: c(x) = xInx
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Controlled Randomisation

Proposition (Anderson, de Palma, & Thisse (1992))

Let X be finite and p a SCF on X. The following are equivalent:
(i) p admits a Luce representation;

(i) p admits an additive perturbed utility representation with entropy costs.

Proof Sketch

Note that p(x,A) > 0 Vx € A (ow infinite marginal cost).
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Controlled Randomisation

Proposition (Anderson, de Palma, & Thisse (1992))

Let X be finite and p a SCF on X. The following are equivalent:
(i) p admits a Luce representation;

(i) p admits an additive perturbed utility representation with entropy costs.

Proof Sketch

Note that p(x,A) > 0 Vx € A (ow infinite marginal cost).

Lagrangian: 3, 4 p(x, A)v(X) = p(x, A) IN(p(x,A)) + A(1 = 3=, c4 P(X, A)).
FOC:v(x) = Inp(x,A) =A+1Vx €A = v(y) = v(x) =Inp(y,A)/p(x,A)
<> py) = p(x) exp(v(y) — v(x)).

= 1234 P0hA) = p(x.A) 3oy ca exp(V(Y) — V(X))

exp(v(x))

= PRA) = = )

Gongalves (UCL) 9. Stochastic Choice

32



Controlled Randomisation

{ Definition

Let X be finite and p a SCF on X. p sat.

(i) ordinal independence of irrelevant alternatives iff 3¢ : (0,1) — R+ s.t. Vx,y €
o(p(x.A)) _ o(px.B)).

o, A)  o(p(.B)’

A N B, whenever probabilities are positive,

Ordinal-IIA as a generalisation of Luce's lIA, where ¢ =id
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Controlled Randomisation

{ Definition

Let X be finite and p a SCF on X. p sat.
(i) ordinal independence of irrelevant alternatives iff 3¢ : (0,1) — R+ s.t. Vx,y €
o(p(x.A)) _ o(px.B)).
o(p(.A)  o(p(y.B))’
(i) acyclicity iff for any permuta‘uons m, & on [n], whenever p(x, A1) > p(Xpia), Ax(1))
and p(xk, Ax) > P(Xpik) Azge) for any 1 < k < n, it is the case that p(xn,An) <

P(Xpi(n)- Asi(n))-

A N B, whenever probabilities are positive,

Ordinal-IIA as a generalisation of Luce's lIA, where ¢ =id
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Controlled Randomisation

{ Theorem (Fudenberg, lijima, & Strzalecki (2015 Ecta))

Let X be finite and p a SCF on X. The following are equivalent:
(i) padmits an additive perturbed utility representation such that cis C’, strictly con-
vex and ¢’(0%) = —o0;
(i) p satisfies ordinal IIA;

(iii) p satisfies acyclicity.

Proof (i) <= (ii) similar to Luce’s (using FOC).

In paper: characterisation of menu-dependent costs, comparison with RUM
(non-nested).
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Overview

6. More
— Learning and Information Acquisition



Learning and Information Acquisition

' Example (Luce & Raiffa, 1957)

A person enters a new restaurant. The waiter informs that that evening there is the
chicken and the steak tartare.

In a first-rate restaurant, the DM's preferred alternative would've been the tartare, but
considering the unknown surroundings, the DM elects the chicken.




Learning and Information Acquisition

' Example (Luce & Raiffa, 1957)

A person enters a new restaurant. The waiter informs that that evening there is the
chicken and the steak tartare.

In a first-rate restaurant, the DM's preferred alternative would've been the tartare, but
considering the unknown surroundings, the DM elects the chicken.

Soon after the waiter returns from the kitchen, apologises profusely, blaming the un-
communicative chef for forgetting to say that frogs’ legs are also on the menu.

The DM dislikes frogs’ legs and would always prefer chicken, yet their response is
“Splendid, I'll change my order to steak tartare”.
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Learning and Information Acquisition

Randomness in information/perception = Randomness in choice.
Also: agency! DM often can choose what to pay attention to or what to learn about.

Examples?
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Learning and Information Acquisition

Randomness in information/perception = Randomness in choice.
Also: agency! DM often can choose what to pay attention to or what to learn about.
Examples?
Learning and paying attention is costly! Cost-benefit analysis in information.
Requires understanding:
(i) what is information,
(i) what's the value of information in a problem,
(iii) how to model cost of information.

See Strzalecki’s slides. More in 2nd Year!
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More

Costly Information Acquisition: Raiffa & Schlaifer (1961), Sims (2003 JME), Matejka &
McKay (2015 AER), Caplin & Dean (2015 AER)

Consideration Sets and Attention: Random attention filters: Cattaneo, Ma, Masatlioglu,
& Suleymanov (2020 JPE)

Sequential Sampling and Timed Stochastic Choice: Fudenberg, Strack, & Strzalecki
(2018 AER), Alés-Ferrer, Fehr, & Netzer (2022 JPE), Gongalves (2024 WP)
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